Search results for "Kolmogorov–Arnold–Moser theorem"
showing 6 items of 6 documents
Floquet spectrum for two-level systems in quasiperiodic time-dependent fields
1992
We study the time evolution ofN-level quantum systems under quasiperiodic time-dependent perturbations. The problem is formulated in terms of the spectral properties of a quasienergy operator defined in an enlarged Hilbert space, or equivalently of a generalized Floquet operator. We discuss criteria for the appearance of pure point as well as continuous spectrum, corresponding respectively to stable quasiperiodic dynamics and to unstable chaotic behavior. We discuss two types of mechanisms that lead to instability. The first one is due to near resonances, while the second one is of topological nature and can be present for arbitrary ratios between the frequencies of the perturbation. We tre…
Invariant rotational curves in Sitnikov's Problem
1993
The Sitnikov's Problem is a Restricted Three-Body Problem of Celestial Mechanics depending on a parameter, the eccentricity,e. The Hamiltonian,H(z, v, t, e), does not depend ont ife=0 and we have an integrable system; ife is small the KAM Theory proves the existence of invariant rotational curves, IRC. For larger eccentricities, we show that there exist two complementary sequences of intervals of values ofe that accumulate to the maximum admissible value of the eccentricity, 1, and such that, for one of the sequences IRC around a fixed point persist. Moreover, they shrink to the planez=0 ase tends to 1.
Superconvergent Perturbation Theory, KAM Theorem (Introduction)
2001
Here we are dealing with an especially fast converging perturbation series, which is of particular importance for the proof of the KAM theorem (cf. below).
Nearly-integrable dissipative systems and celestial mechanics
2010
The influence of dissipative effects on classical dynamical models of Celestial Mechanics is of basic importance. We introduce the reader to the subject, giving classical examples found in the literature, like the standard map, the Hénon map, the logistic mapping. In the framework of the dissipative standard map, we investigate the existence of periodic orbits as a function of the parameters. We also provide some techniques to compute the breakdown threshold of quasi-periodic attractors. Next, we review a simple model of Celestial Mechanics, known as the spin-orbit problem which is closely linked to the dissipative standard map. In this context we present the conservative and dissipative KA…
Kolmogorov-Arnold-Moser–Renormalization-Group Analysis of Stability in Hamiltonian Flows
1997
We study the stability and breakup of invariant tori in Hamiltonian flows using a combination of Kolmogorov-Arnold-Moser (KAM) theory and renormalization-group techniques. We implement the scheme numerically for a family of Hamiltonians quadratic in the actions to analyze the strong coupling regime. We show that the KAM iteration converges up to the critical coupling at which the torus breaks up. Adding a renormalization consisting of a rescaling of phase space and a shift of resonances allows us to determine the critical coupling with higher accuracy. We determine a nontrivial fixed point and its universality properties.
The KAM Theorem
2016
This theorem guarantees that, under certain assumptions, in the case of a perturbation \(\varepsilon H_{1}(\boldsymbol{J},\boldsymbol{\theta })\) with small enough ɛ, the iterated series for the generator W(θ i 0, J i ) converges (according to Newton’s procedure) and thus the invariant tori are not destroyed. The KAM theorem is valid for systems with two and more degrees of freedom. However, in the following, we shall deal exclusively with the case of two degrees of freedom.